Euclid Exercise 3¶
links: AC2 TOC - Number-Theoretic Algorithms and Hardness Assumptions - Index
Euclid¶
Euclid(48, 174)
174 mod 48 = 30 48 mod 30 = 18 30 mod 18 = 12 18 mod 12 = 6 12 mod 6 = 0
ExtEuclid¶
see Extended Algorithm of Euclid
ExtEuclid(48, 174)
6 = 18 - 1(12) | |
---|---|
12 = 30 - 1(18) | 6 = 18 - 1(30 - 1(18)) = 2(18) - 1(30) |
18 = 48 - 1(30) | 6 = 2(48 - 1(30)) -1(30) = 2(48) - 3(30) |
30 = 174 - 3(48) | 6 = 2(48) - 3(174 - 3(48)) = -3(174) + 11(48) |
Multiplicative Inverse¶
MultInv(48, 127)
127 mod 48 = 31 48 mod 31 = 17 31 mod 17 = 14 17 mod 14 = 3 14 mod 3 = 2 3 mod 2 = 1 2 mod 1 = 0
1 = 3 -1(2) | |
---|---|
2 = 14 - 4(3) | 1 = 3 - 1(14 - 4(3)) = -1(14) + 5(3) |
3 = 17 - 1(14) | 1 = -1(14) + 5(17 - 1(14)) = 5(17) - 6(14) |
14 = 31 - 1(17) | 1 = 5(17) - 6(31 - 1(17)) = -6(31) + 11(17) |
17 = 48 - 1(31) | 1 = -6(31) + 11(48 - 1(31)) = 11(48) - 17(31) |
31 = 127 - 2(48) | 1 = 11(48) - 17(127 - 2(48)) = -17(127) + 45(48) |
45 * 48 mod 127 = 1
links: AC2 TOC - Number-Theoretic Algorithms and Hardness Assumptions - Index